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The interface a t  the top of a dilute sedimenting suspeniion of small particles which 
are not identical does not remain sharp but instead becomes increasingly diffuse as 
the sedimentation proceeds. For more concentrated suspensions, the self-sharpening 
effect of hindered settling leads to a considerable reduction in the observed spreading 
of the sedimenting interface. In  order to quantify this spreading, a light extinction 
technique was used to measure the concentration profile in the interface of a 
suspension of particles with a small spread of sizes as it fell past a thin sheet of light. 
A particle volume-fraction range of 0.002 < 95, < 0.15 was examined, and each fluid- 
particle system had a particle Reynolds number less than and a PQclet number 
greater than lo7 so that inertia and colloidal effects were negligible. Calculations of 
the spreading arising from the small degree of polydispersity in particle sizes and the 
self-sharpening effect are presented. Surprisingly, the measured vertical thickness of 
the interface was found to be several times that predicted from this theory. 

It is proposed that the observed spreading may be attributed to hydrodynamic 
interactions between particles that lead to fluctuations in particle settling velocities 
about the mean. An analysis of the data shows that the measured interface thickness, 
after subtracting off that predicted from polydispersity and self-sharpening, increases 
approximately with the square root of the settling distance and may therefore be 
described as a diffusion process, termed ‘ self-induced hydrodynamic diffusion ’. By 
scaling the hydrodynamic diffusivity as D = U U ; D ( @ ~ ) ,  where U; is the median 
hindered settling velocity, a is the median particle radius, and @, is the volume 
fraction of particles well below the interface, an approximate analysis of the data was 
used to infer that the dimensionless scaled diffusion coefficient, B,  is between 1 and 
2 for the smaller particle volume fractions examined, increases very rapidly with 
increasing concentration to a value between 10 and 15 for particle concentrations of 
a few percent by volume, and then levels off or declines slightly as the particle 
concentration is increased further. 

1. Introduction 
It is well known that the mean rate of sediment of suspended particles with 

uniform concentration is reduced as their concentration is increased ; this observation 
is commonly referred to as ‘hindered settling’. A consequence of hindered settling is 
the ‘self-sharpening effect’ by which the spreading of the interface a t  the top of a 
sedimenting suspension is reduced as the particle concentration is increased, as 
illustrated in the educational movie ‘Low Reynolds Number Hydrodynamics ’ 
narrated by G. I .  Taylor. It arises because the particles that are left behind a t  the top 
of the interface are in a region of lower concentration than that of the bulk 
suspension, and they therefore experience diminished hindered settling. Thus, the 



108 R. H .  Davis and M .  A .  Hassen 

difference between the mean hindered-settling velocity of the faster particles a t  the 
bottom of the interface and the slower particles a t  the top of the interface is reduced 
as the particle concentration is increased, thereby reducing the rate of spreading of 
the interface. 

The observed spreading of the interface is usually attributed to the variation in 
particle sizes, densities and/or shapes that is present in nearly all suspensions. The 
vertical thickness of the interface a t  the top of an initially well-mixed suspension is 
then expected to increase in proportion to the elapsed time, with the constant of 
proportionality being a measure of the variation in settling speeds of the particles in 
the polydisperse suspension. 

The motion of a particle sedimcnting due to gravity is influenced by the relative 
positions and velocities of the neighbouring particles. Thus, even in a monodisperse 
suspension containing spherical particles of identical size and density, the 
instantaneous velocities of the individual particles vary about the mean sedi- 
mentation velocity. For example, the velocity of a particle that  forms a close pair 
with its nearest neighbour is greater than the mean, whereas the velocity of a particle 
that is relatively isolated from its neighbours is less than the mean. Moreover, since 
the relative positions of the suspended particles are continually changing, the 
velocity of each particle fluctuates during the sedimentation process. This behaviour 
has led to the use of stochastic models for the study of sedimentation, as described 
by Tory & Pickard (1986). The velocity fluctuations can be shown to lead to particle 
displacements that  can be represented statistically as a diffusion process, termed 
' self-induced hydrodynamic diffusion ' (G. K. Batchelor, personal communication). 
The related phenomenon of ' shear-induced hydrodynamic diffusion ', in which 
particles in a sheared suspension undergo migrations about the average streamlines 
owing to hydrodynamic interactions, has been studied experimentally by Eckstein, 
Bailey & Shapiro (1977) and by Leighton & Acrivos (1987a,b), and simulated by 
Durlofsky, Brady & Bassis (1987). 

An important consequence of self-induced hydrodynamic diffusion is that it will 
contribute to the spreading of the interface at the top of a sedimenting suspension. 
I n  contrast to spreading due to  particle polydispersity , a purely diffusive spreading 
of the interface would result in an interface thickness that increases in proportion to 
the square root of time, similar to that observed in the spreading of a dye front as 
it flows through a porous medium. 

This paper presents a study of the spreading of the interface at the top of a 
sedimenting suspension of small particles in order to gain insight into the mechanisms 
that contribute to this spreading. I n  $2, we present a theory to describe the spreading 
of the interface for a polydisperse suspension experiencing hindered settling without 
particle diffusion. The results of this theory for Gaussian size distributions are given 
in 3 and clearly predict the self-sharpening effect with increasing particle volume 
fraction. In 94, an experiment is described that measured the degree of interface 
spreading during the sedimentation of nowBrownian spherical particles with narrow 
size distributions. The results of these experiments (95) show that the rate of 
interface spreading is significantly greater than that predicted for the diffusionless 
theory. In  $6, the data are examined to see whether the additional spreading (in 
excess of that expected from polydispersity and hindered settling effects alone) could 
be described as a diffusion process and to infer information on the magnitude of the 
self-induced hydrodynamic diffusivity . 
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2. Theoretical description of interface spreading 
In this section, a theoretical description of the spreading of the interface at the top 

of a sedimenting suspension containing a distribution of particle sizes is presented. 
It is assumed that the sedimentation is described by low-Reynolds-number 
hydrodynamics, with negligible inertia, Brownian motion and colloidal forces, and 
that the vessel size is large compared with the particle size. The theory predicts the 
particle concentration and size distribution as a function of settling depth and time. 
As depicted in figure 1 ,  these quantities remain equal to their initial values in the 
bulk suspension below the interface region and above the sediment layer. The total 
particle concentration decreases in a continuous fashion from the bottom to the top 
of the interface, as does the average particle size. The interface moves downward 
with time, and its thickness increases. 

Particle concentrations within the interface are governed by the particle-flux 
continuity equation, supplemented by a hindered-settling relation between sedi- 
mentation velocities and local particle concentrations. A continuous distribution of 
particle sizes may be analysed by solving differential particle-flux continuity 
equations with finite-difference techniques, as described by Davis, Herbolzheimer & 
Acrivos (1982). In particular, the differential flux continuity equation is 

Equation (2.1) is derived from a Lagrangian viewpoint by considering a horizontal, 
isoconcentration slice within the sedimenting interface where U -k dU is the fall speed 
of the bottom of the slice, U is the fall speed of the top of the slice, and $ is the volume 
fraction within the slice of particles having settling velocity u. The left-hand side of 
( l . l ) ,  when multiplied by dU, is the difference between the rate a t  which particles 
with settling velocity u enter the bottom of the slice and that at which they exit the 
top of the slice, and the right-hand side represents their rate of accumulation within 
the slice whose thickness increases a t  a rate dU. Equation (2.1) holds for all u < U and 
for all U between the minimum (top) and maximum (bottom) fall speeds of 
isoconcentration planes within the sedimenting interface. 

In  the present paper, we choose instead to follow the development of Smith (1966) 
and first discretize the continuous distribution and then to use a particle flux 
continuity equation for each discrete particle species. As will be shown, this is 
equivalent to  choosing a particular finite-difference scheme for solving (2.1). A 
continuous distribution of particle sizes is modelled by dividing the total size range 
into N intervals. The value of N is chosen to be sufficiently large that it does not 
significantly influence the final results. Each interval is represented by its midpoint 
diameter and has a concentration equal to the total particle concentration multiplied 
by the fractional probability for the interval in question, which is equal to the area 
under the continuous probability density function between the lower and upper 
diameters defining the interval. As described by Davis & Acrivos (19851, and 
depicted in figure 1,  the interior of an initially well-mixed suspension of N discrete 
particle species will stratify into N layers. The lowest layer (layer 1)  represents the 
bulk suspension and contains all N species of particles a t  their original con- 
centrations. Above this is layer 2, which is devoid of the fastest-settling species. Each 
successive layer is devoid of the fastest-settling species from the layer below ; the top 
layer (layer N )  contains only the slowest-settling particle species, and above it is 
a growing clarified fluid layer. Of course, beneath layer 1 is a growing sediment layer 
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FIGURE 1. Schematic of the sedimentation of a discretized polydisperse suspension. 

of stationary particles. The fan of thin layers from layer 2 up to layer N represents 
the expanding interface. Our goal is to  determine the particle concentrations and 
velocities in each of these layers and then to use this information to predict useful 
macroscopic information such as the rate of spreading of the interface. Note that the 
distribution of particles is uniform in any horizontal plane. No lateral segregation is 
expected, in agreement with the theory of Batchelor & Janse van Rensburg (1986) 
which shows that suspensions of equidensity particles are stable. 

2.1. Particle-$ux continuity equation 
The particle-flux continuity equation for multispecies sedimentation was first 
developed by Smith (1966) and has subsequently been used by several investigators 
to study the sedimentation of polydisperse suspensions, as reviewed by Davis & 
Acrivos (1985). This equation is given by 

$ i , k + l ( U k k - U i , k + l )  = # i k ( u k k - u i k ? ) ;  i = k+1, . . . , N  ( 2 . 2 )  

and represents a jump condition for the concentration of particle species i when 
moving from layer k to layer k+ 1.  The left-hand side is the rate a t  which particles 
of species i enter the bottom of layer k+ 1,  and the right-hand side is the rate at 
which they leave the top of layer k. These must be equal in order to satisfy mass 
conservation a t  the shock surface separating layers k and k + 1. The particle species 
are numbered successively so that species k is the fastest-settling particle in layer k. 
In  (2.2), the first subscript refers to  the particle species, and the second subscript 
refers to the layer within the interface ; thus, #ik is the volume fraction of species i 
in layer k, and uik is the average sedimentation velocity of species i in layer k. We note 
that (2.2) may also be derived by integrating (2.1) from the top of layer k(U = ukx) 
to the top of layer k+ 1(U = u ~ + ~ . ~ + ~ ) .  Thus, using ( 2 . 2 )  is equivalent to solving 
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(2.1) by a first-order Euler's finite-difference method, only with $ on the right-hand 
side of (2.1) being evaluated a t  the end of the step ($ = $ i , k + l )  rather than a t  the 
beginning of the step ($ = &). Equation (2.2) is supplemented by the constraint 
that species k is only present in layer k and below, i.e. 

$i,k+l = 0 ;  i = 1, ..., k. (2.3) 

Finally, we note that only the flux of particles due to their mean sedimentation 
velocities is included in (2.2). In situations where Brownian diffusion or self-induced 
hydrodynamic diffusion of particles are significant, the rate of spreading of the 
interface will be higher than that predicted by this theory, as will be shown by the 
experimental results presented in $5. 

2.2. Hindered-settling functions 

Equation (2.2) cannot be solved for both the volume fraction and the settling 
velocity of each particle species in each layer. The required additional information is 
a hindered-settling function, which relates the settling velocity of each particle 
species to the local concentrations of all of the particles present : 

uilc = Ui,ofirC, (2.4) 

where fil, is the hindered-settling function for particle species i in layer k, and u < , ~  is 
the terminal settling velocity for an isolated particle of species i. For spherical 
particles of radius ai and density pi falling through a Newtonian fluid of viscosity ,u 
and density p at small particle Reynolds number, u ~ , ~  is given by Stokes law : 

ui,o = 2 a , 2 ( ~ i - ~ ) g / 9 ~ ,  ( 2 . 5 )  

where g is the acceleration constant. 
The hindered-settling function f i k  in general will depend on the volume fractions 

of all of the species present in layer k. In  supposing that the hindered functions 
depend only on the local volume fractions, an assumption is made that the volume 
fractions vary in the vertical direction over a lengthscale that is large compared with 
the particle size so that the suspension behaves locally like a homogeneous 
dispersion. This will be true after a short transient period. In a dilute dispersion the 
hindered-settling function is of the form 

Batchelor (1982) has derived formulae for the dimensionless sedimentation coefi- 
cients S,, and they have been calculated numerically by Batchelor & Wen (19821 
as functions of the size ratio aj/ai and the reduced density ratio ( p i - p ) / ( p i - p ) .  
Equation (2.6) is based upon a pairwise theory of particle interactions and is 
restricted to dilute suspensions for which the total particle volume fraction is less 
than about 0.05. In experiments with dilute bidisperse and tridisperse experiments, 
Davis & Birdsell (1988) found very good agreement with predictions using (2.6) and 
the appropriate sedimentation coefficients calculated by Batchelor & Wen ( 1982). 
For equidensity spheres, the sedimentation coefficients are always negative. When 
the ratio ak/ai is very large, (2.6) may yield negative values for f i k ,  indicating that 
small particles may move upwards owing to the upswelling of the suspending fluid 
caused by the sedimentation of large particles (Greenspan & Ungarish 1982). For the 
narrow size distributions of particles used in experiments described in this paper, this 
effect is not predicted, nor was it observed. 
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Since only limited sedimentation data for polydisperse suspensions are available, 
hindered settling functions based upon the results for monodisperse suspensions are 
often adapted for polydisperse suspensions. A widely used formula of this type is 
based upon the Richardson & Zaki (1954) correlation for a monodispersion, viz. 

where 

is the total volume fraction of particles in layer k, and the exponent n is generally 
assigned a value of approximately 5 in order to represent most accurately the data 
for low Reynolds numbers. Another common monodisperse formula is that presented 
by Barnea & Mizrahi (1973) : 

Because of the simplicity and accuracy of the Richardson-Zaki correlation in 
representing settling data over a wide range of particle volume fraction, (2.7) will be 
used for the calculations presented in this paper, unless otherwise noted. An 
exponent of n = 5.0 is chosen for use in (2.7) based upon the findings obtained by 
Davis & Birdsell (1988) for sedimentation of particles with narrow size distributions. 
Since we restrict our attention in this work to relatively narrow size distributions, it  
is expected that a hindered-settling function that depends only on the total local 
particle concentration should be adequate. The validity of this approximation is 
discussed further in $ 5 .  

2.3. Method of solution 
Substituting (2.4) into (2.2) yields 

$(,k+l(Uk,ofkk-Ui,ofa,k+l) = $ i k ( U k , o f k k - U i , o f i k )  (2.10) 

f o r a l l k =  1, ..., N-1 a n d f o r i = k + l ,  ..., N.Sincefi,,+,isafunctionofthevolume 
fractions of the particle species present in layer k + 1 ,  (2.10) represents a system of 
N - k coupled nonlinear algebraic equations for the particle volume fractions in layer 
k + 1. The solution of these equations requires that the species volume fractions in 
layer k are known. Thus, we start a t  the lowest region of the suspension (layer 1) 
where the volume fraction of each particle species is a t  its specified initial value. 
Equation (2.10) with k = 1 is then solved for the particle concentrations in layer 2, 
except that (2.3) is also used to give = 0. In  a similar manner, the calculation is 
propagated up through the fan of layers to the top of the interface. The velocity of 
each particle species in each layer is related to the volume fractions through (2.4) and 
the chosen hindered settling function. 

The solution of (2.10) for each successive layer was performed using a nonlinear, 
unconstrained minimization technique. Squaring (2.10) and summing over all 
particle species gives the required minimization function for layer k + 1 : 

N 

Fk+l = 2 M i ,  k + l ( U k ,  Ofkk  - U t ,  o f i ,  k + l )  - $ ik (Uk ,  Ofkk -ui, O f i J l 2 *  (2.11) 
i -k+l  

An effective algorithm for minimizing Fk,.l was provided by R. B. Schnabel and 
L. Flach (personal communication). I n  this algorithm, a secant technique is used to 
compute a Hessian matrix for a 'quasi-Newton' search for the vector of solutions 
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giving a minimum value to the supplied function. An important restriction placed on 
the function to be minimized is that the solution-vector components should be of 
similar magnitude. Since species concentrations in a layer within the sedimenting 
interface may easily span several orders of magnitude, each concentration must be 
scaled before use of the algorithm. Scaling factors were obtained from the initial 
distribution and then updated for each consecutive layer. Also, the isolated 
sedimentation velocities in (2.11) were non-dimensionalized using the Stokes velocity 
of the median particle size. The minimization technique yielded a value of zero 
(within the specified relative accuracy of for each term in the summation in 
(2.11). 

3. Numerical results and discussion 
We restrict our attention to equidensity particles whose sizes have a normal or 

Gaussian distribution about the mean on a volume basis. The theoretical predictions 
for particle concentrations and velocities in the sedimenting interface then, in 
dimensionless form, depend on two dimensionless parameters : d j o ,  the total initial 
volume fraction, and a/a, the relative spread in the size distribution, where a is the 
mean particle radius and CT is the standard deviation in particle radii about the mean. 
A total radius range of 4 standard deviations above and below the median was used 
in the numerical calculations. This range was subdivided into N discrete particle 
species. The value of N was varied from N = 10 to N = 30. It was found that a value 
of N = 25 gave particle concentration distributions that had converged with a 
relative error of less than for all cases examined. 

Figure 2 shows typical solutions to (2.11) for djo = 0.02 and 0.05, and a / a  = 0.057 
(based upon one of the particle distributions used in the experiment, with a = 70 pm 
and CT = 4 pm). Plotted is the volume fraction of each species for each layer versus 
the corresponding radius. Thus, the curve labelled k = 1 gives the species volume 
fractions in layer 1 and shows the initial Gaussian size distribution, whereas the 
curve labelled k = 13, for example, gives the species volume fractions in layer 13, 
which is devoid of the 12 fastest-settling species of particles. These results give the 
particle size distributions and concentrations in each layer in the interface region. In 
order to achieve the goal of predicting these quantities as a function of settling depth 
and time, the location of each layer is needed as a function of time. These are easily 
determined. Once the species volume fractions #ik are found, then the corresponding 
hindered-settling velocities uik may be found from (2.4)-(2.9). The rate of fall of the 
interface separating region k from region k+ 1 above is equal to the fall velocity of 
the largest particles in region k, ukk. Thus, region k is located between z = ( u ~ - ~ ,  k- l )  t 
and z = u k k t  after a settling time t ,  where z is measured downward from the top of 
the liquid. 

3.1. Interface median  velocity 
An important piece of information that may be obtained from the solution is the 
predicted rate of fall of the interface. Since the interface spreads as the sediment 
proceeds, the rate of fall does not have a unique value. For reasons discussed later, 
we chose to examine the rate of fall of the location within the interface where the 
total particle volume fraction, @, is equal to  one-half of the particle volume fraction 
in the bulk suspension. This rate of fall is termed the interface median velocity and 
denoted by u;. It is found by first identifying the layer k within the interface where 
djk = The interface median velocity is then the fall velocity of the top of that 
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FIGURE 2. Particle species concentrations in the 25 layers of a polydisperse suspension with an 
initial Gaussian size distribution, having a / a  = 0.057 and (a )  Go = 0.02, ( h )  63, = 0.05, 
approximated by dividing it into 25 discrete particle species. The median particle radius is chosen 
t o  be a = 70 pm. 

layer, u1 = ukk. An interpolation procedure is used if the total particle volume 
fraction: of two adjacent layers bracket +Go. 

In  figure 3, the interface median velocity is made dimensionless with the Stokes 
velocity of the median particle size, u ; , ~  and plotted versus @,,. Also shown as the 
dashed line in figure 3 is the Richardson-Zaki hindered settling function (2.7) with 

replaced by Go. This coincides within 1.5%, for all <Po, with the solid line, which 
was computed from the complete polydisperse solution of (2.1 1)  for a / a  = 0.057. Note 
that the values for the hindered-settling function required in (2.11) were also 
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FIGURE 3. The effect of self-sharpening on the interfa,ce median velocity. The solid line is the 
prediction of the polydisperse theory, and the dashed line is the hindered-settling prediction for a 
monodisperse suspension with all particles having the median size. 

obtained from (2.7). Results for other values of u l a  up to 0.25 (the largest relative 
spread investigated) were also found to agree with the dashed line within 2 %. This 
was also the case when (2.9) was used instead of (2.7) in both the polydisperse and 
monodisperse calculations. 

The findings above lead to the very important conclusion that the speed of 
movement of the isoconcentration plane were = i for a narrowly distributed 
polydisperse suspension is nearly identical to the hindered settling velocity a t  the 
same total particle concentration Go of a monodisperse suspension with all particles 
equal in size to the median particle size in the polydisperse suspension. This 
conclusion may appear paradoxical because the hindered-settling effect is weaker in 
the polydisperse suspension a t  the location where @ = iQ0 than in the monodisperse 
suspension where @ = Q0. The resolution comes from the particle flux continuity re- 
quirement which causes the largest particle size present in the layer where @ = 
in the polydisperse suspension to become progressively smaller than the median 
size in the bulk suspension as Q0 is increased. This behaviour is implied in figure 2 
where i t  is seen that the largest particle radius is less than the median radius of 
70 pm for the layer where the area under the curve is one-half that  of the bulk 
suspension (layer I) .  For Go = 0.02, this is layer 15, and for Q0 = 0.05, this is layer 
17. 

3.2. Rate of spreading of the interface 
In  the previous section, the solution of (2.11) was used to determine the fall velocity 
of the isoconcentration plane within the interface where = i. I n  a similar 
manner, the velocity of other isoconcentration planes may be determined. I n  figure 
4, these velocities are plotted versus the total local solids volume fraction for three 
Gaussian particle size distributions. The vertical displacement of all three curves 
from unity a t  = $ is a result of hindered settling. Also, the dimensionless 
velocities of the isoconcentration planes within the spreading interfaces for the three 
suspensions are nearly equal for @ / Q 0  = i, but they diverge away from this point. As 
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FIGURE 4. The influence of the particle size distribution on the spread of isoconcentration fall 
velocities of the interface for Go = 0.05. 

expected, the most narrow size distribution gives a relatively sharp velocity profile 
within the interface, whereas the broader size distributions give broader spreads in 
settling velocities. 

Of more interest for the present purposes is the effect of increasing concentration 
on the interface for a single size distribution. This is shown in figure 5 where the 
dimensionless isoconcentration velocities are plotted for cr/a = 0.057 and Go = 0, 
0.05, and 0.10. The consequences of hindered settling are clearly evident from this 
figure. First, the interface falls more slowly as Q0 is increased. Second, the self- 
sharpening effect becomes more pronounced as Go is increased. In the dilute limit 
(@o + 0 ) ,  the shape of the curve is given directly from the Gaussian size distribution 
and the size-dependence of the Stokes settling velocities. For Q0 = 0.10, the velocity 
profile is very flat, indicating that the particles within the interface fall with only a 
small spread in velocities, and so the interface remains relatively sharp. 

In the absence of a diffusive spreading mechanism, the thickness of the interface 
a t  the top of a sedimenting suspension increases in proportion to the settling time, 
with the constant of proportionality being a measure of the spread in settling 
velocities of the particles within the interface. Since there is a continuous spreading 
velocities for a continuous distribution of particles sizes, a choice must be made in 
order to define a unique interface thickness. A convenient definition is the quartile 
interface thickness defined as 

8Jt) = (ua-u$t, (3.1) 

where 8,(t) is the quartile thickness of the interface after batch settling of an initially 
well-mixed suspension in a vertical vessel for a time t ,  and u+ and ui are the velocities 
of the isoconcentration planes within the interface where @/@,=a and t ,  
respectively. The subscript p is included to emphasize that this interface thickness 
is from the effects of polydispersity and hindered settling alone; diffusion is not 
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FIGURE 5.  The self-sharpening effect of particle concentration on the spread of isoconcentration fall 
velocities of the interface for u / a  = 0.057. 

included in this prediction. By defining a sedimentation distance ash  = utt, (3.1) may 
be recast to give a dimensionless or relative quartile interface thickness : 

The velocity difference u;-u; is the time rate of increase of the thickness of the 
sedimenting interface. From figures 4 and 5 ,  it  is seen that this decreases as a la  
decreases (more narrow distributions) or as Go increases (the self-sharpening effect). 
These trends are quantified in figure 6 where the relative quartile interface thickness 
is plotted as a function of the total initial particle volume fraction for different values 
of the relative standard deviation in particle sizes. The relative quartile interface 
thickness in the limit Go+O may be determined directly from the initial size 
distribution. In this limit, the particles settle according to (2.4) so that (3.2) 
becomes 

2 2  
a3 -ai P - a  4 

h a2 ’ (3.3) 

where, for a Gaussian distribution with median radius a and standard deviation (r, 
the first and third quartile radii are, respectively a; = a-0.67cr and u; = a+0.67a. 
Substituting these values into (3.3) gives 

6 2.70a 9=- 
h a , (3-4) 

indicating that the relative interface thickness increases in proportion to  the relative 
standard deviation in particle sizes, in the dilute limit. 
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FIGURE 6. Relative quartile interface thickness variation with total particle volume fraction for 
n / a  = 0.057, 0.10, and 0.20. 

3.3. Concentration buildup in upper layers of the interface 

Referring back to the ‘porcupine’ shape in figure 2, i t  is noted that although the total 
particle concentration in any given layer is lower than that in the layer below, the 
concentration of each individual species is higher than in the layer below. This is 
possible because the upper layer contains one less particle species. These findings 
may be expressed as 

~ $ ~ + ~ < d j ~ ,  k = 1 , 2  ,..., N - 1 ,  (3 .5)  

$ i , k + l  > $ik, i = k+ 1,  ..., N .  (3.6) 

The validity of (3.5) and (3.6) is easily proved from (2.10) for the usual case of a 
hindered-settling function that decreases monotonically with increasing total solids 
volume fraction. 

An interesting physical situation arises when the volume fraction is made 
sufficiently high that the hindered-settling velocity of the fastest-settling particles in 
the bulk suspension is reduced below the isolated fall velocity of the slowest-settling 
particles. In this situation, one might expect that  a steady, sharply defined interface 
would develop because the slower-settling particles would tend to catch back up to 
the bulk suspension if they were left behind a t  the top of the interface in a region of 
very low concentration. This is not the case, however, because the particle volume 
fraction at the very top of the interface increases as djo is increased so as to ensure 
that the slowest-settling particles a t  the top of the interface fall slower than the 
fastest-settling particles at the bottom of the interface. 

This is illustrated for a variety of size distributions in figure 7 where the relative 
volume fraction in the top layer of the interface, d j N / d j O ,  is plotted versus djo for 
a/a=0.057, 0.081, and 0.15. It is seen that the concentration a t  the top of the 
suspension is near zero for djo less than a critical value that increases with the breadth 
of the size distribution (for djo less than the critical value, @,/@, approaches zero in 
the limit as N becomes large). Above the critical value of Q0,  the concentration a t  the 
top of the suspension has a non-zero value that increases with increasing dj,. The 
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FIGURE 7. The variation of the particle volume fraction of the upper layer in the interface with total 
initial particle volume fraction for n / a  = 0.057, 0.081, and 0.15. 

critical value of @,, must be larger than the volume fraction at  which the hindered- 
settling velocity of the larger particles is equal to the isolated-settling velocity of the 
smaller particles so as to assure that hindered settling causes the top of the interface 
to fall more slowly than the bottom of the interface. Finally, we note that the 
predicted results in figures 3-7 do not change significantly when N is increased from 
the value used ( N  = 25) .  

4. Experiment : materials and methods 
An experimental study was carried out in our laboratory in order to  quantify the 

degree of spreading of the interface a t  the top of a sedimenting suspension by using 
a light-extinction technique to measure the concentration profile in the interface as 
i t  fell past a thin horizontal sheet of light. Details of the experimental apparatus, 
materials, and methods are given in the thesis by Hassen (1987) and are summarized 
here. 

4.1. Particles and JEuids 

The experiments were carried out in a single Newtonian fluid with two types of 
spherical glass beads. Particles of type 1 were Class V microbeads (Ferro Corporation) 
which were supplied presieved between US standard sieve numbers 100 and 120 
(having openings of 149 and 125 microns, respectively). These beads were further 
sieved in order to reduce the fraction of beads that were smaller than the smaller 
sieve openings. The particle size distribution was analysed by microphotography, 
sedimentation and conductivity measurement, and was found to be approximately 
Gaussian with a median particle radius of a = 70 pm and a standard deviation of 
cr = 4 pm (by volume). Particles of type 2 were Class IV microbeads (Ferro 
Corporation) which were supplied presieved between US standard sieve numbers 100 
and 140 (the latter having openings of 105 microns). They were found also to have 
Gaussian distribution, with a median radius of a = 61 pm and a standard deviation 
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of u = 6 pm. The particle densities were determined by measuring with a hydrometer 
the density of a liquid in which the particles werc neutrally buoyant. For each 
particle type, the solid density is ps = 2.49 g/cm3. A small (less than 1 YO) variation 
in particle densities was observed owing to the presence of small air bubbles inside 
the particles. The suspending fluid was a blend of 49 YO by mass UCON 50-HB-280X 
(Union Carbide) and 51 YO Monsanto HB-40, with the blend composition chosen so 
as to match closely the refractive index of the glass beads. The measured properties 
of this fluid a t  25.0 "C are a viscosity of ,u = 85 cP, a density of p = 1.016 g/cm3, and 
a refractive index of 1.518. 

4.2. Experimental procedure 
All of the experiments were carried out in a vertical rectangular vessel with glass 
walls and having inside dimensions of 40 cm high and 5.1 cm by 3.3 cm in cross- 
section. Experiments were carried out by introducing weighed amounts of fluid and 
particles into the vessel which was immersed in a glass-walled water bath controlled 
at a temperature of 25.0 "C. The volume fractions of the particles in the experiments 
were varied throughout the range 0.002 < Q0 < 0.15. After allowing the system to 
reach thermal equilibrium, a plunger was used to mix the suspension. The plunger 
was moved vigorously up and down and back and forth through the suspension for 
several minutes in order to remove as far as possible any initial inhomogeneities in 
the suspension ; care was taken, however, to not entrain any air bubbles through the 
liquid/air interface. At the cessation of stirring, a clock was started to mark the 
beginning of sedimentation. Residual motion from the stirring was damped out by 
the suspension viscosity in less than a few seconds. However, vertical convective 
motions on lengthscales much greater than the particle spacing were sometimes 
observed visually in the interior of the suspension, presumably due to slight 
macroscopic inhomogeneities in the particle concentration, such as would be 
expected from statistical considerations of random placements of the particles in the 
suspension. When such motions were observed, the experiment was stopped and the 
suspension was stirred further prior to restarting. Fortunately, these buoyancy- 
driven convective motions in the interior rapidly turned over so that the suspension 
became quiescent, and they did not appear to affect the stably stratified interface a t  
the top of the suspension. 

The sedimenting suspension was analysed using a light-extinction principle similar 
to that employed by the Sedigraph 5000D Particle Sizer Analyzer produced by 
Micromeritics. The suspension sedimented past a thin horizontal sheet of light 
(1.0 cm wide by 0.06 em high) produced by passing a 2 mW He-Ne laser beam 
(Uniphase Corporation) through a set of cylindrical lenses (Melles-Griot). The light 
transmitted through the vessel was focused onto a photodiode, and the voltage signal 
proportional to the transmitted light intensity was recorded as a function of time 
through an analog-to-digital converter into a microcomputer and stored for later 
smoothing and analysis, as described by Hassen (1987). As shown in figure 8, two 
light beams were used simultaneously, one below the other in order to acquire two 
measurements of the interface per sedimentation run. For each suspension, the 
experiments were repeated so that typically four to six measurements of the interface 
were made for each value of h (where h is the vertical distance of the light slit below 
the liquid/air interface), and four different values of h were examined : h = 1.5, 6.0, 
24 and 32 cm. 
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H 

FIGURE 8. The sedimentation/light-extinction apparatus : A, power supplies ; R ,  lasers ; C, 
cylindrical converging and diverging lenses ; D, vessel containing the suspensions ; E, photodiodes ; 
F, power meters; G,  microcomputer. 

4.3. Method of analysis of light-intensity data 
Except for noise, which we have analysed to show that it arises from the statistical 
fluctuation of the number of particles in the beam a t  any instant (and which may be 
removed digitally), I ( t )  has a very simple, sigmoidal shape, as illustrated in figure 9. 
At time t = 0, the beam passes through the initially well-mixed suspension of volume 
fraction @,, and a constant intensity I ,  is observed from t = 0 to t = t o .  At time to ,  
the last of the fastest particles in the suspension fall past the beam, and the intensity 
begins to  rise as the concentration in the beam decreases. As the rest of the interface 
falls past the beam, the amount of light transmitted through the suspension increases 
until t = t,, at which time all the particles have fallen past the beam, and a constant 
intensity If is recorded, coinciding with the beam’s passage through clear fluid above 
the interface. 

Each point of I ( t )  corresponds to a total solids volunie fraction @(t) in the 
suspension. We use a modified form of Beer’s law to relate the light absorbed by the 
suspension to  the concentration of particles. The relationship is derived by supposing 
that the light absorbance is proportional to the total cross-sectional area of particles 
present in the beam (Herdan 1960), and is stated as 

where L is a proportionality constant, @(t)  is the volume fraction of particles in the 
beam at  time t ,  and a*(t) is the area-averaged radius of particles in the beam. This 
relationship is valid only if the particle volume fraction is sufficiently low that 
multiple scattering effects are negligible. Calibrations by Davis & Birdsell (1988) with 
suspensions similar to those used in this work indicate that the range of validity is 
only @ < 0.02 when the refractive indices of the particles and fluid are not matched, 
whereas this is extended to @ < 0.15 when the refractive indices are matched as 
closely as possible (note that an exact match i s  not possible owing t o  the presence of 
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the small air bubbles in the particles). Equation (4.1) may be used to define a 
parameter x: 

x=-.....-o- a* ~ ~ g ~ o ~ ~ f / ~ ~ ~ ~ l  
@o a*@) - logm[Id~oI ’ 

where a$ is the area-averaged particle radius in the initial suspension. Equation (4.2) 
may be solved for I ( t )  to yield 

I ( t )  = I ; I ; -z .  (4.3) 

Equation (4.3) is the primary working relationship for analysing the data because it 
specifies the transmitted light intensity corresponding to any given particle volume 
fraction within the interface. For example, in figure 9 is shown the value of I ( t )  = I ;  
as calculated from (4.3) with @ = $Po. The corresponding settling time a t  which the 
particle volume fraction in the beam is iQ0 is denoted by ti, which is equal to the 
value of the abscissa of the light intensity versus time curve when the ordinate has 
a value of I;, as shown in figure 9. 

The ratio u$/u* represents a ‘correction’ to Beer’s law for the presence of 
polydispersity in the suspension. Observe that for a monodisperse suspension, a,*/a* 
is unity. For a slightly polydisperse suspension, this ratio remains close to unity, but 
for highly polydisperse suspensions, the ratio @/a* can become significantly greater 
than unity (note that a*(t) < a$ for t > to because the largest particles are then no 
longer present in the beam). For dilute polydisperse suspensions in which hindered 
settling is negligible, a$/a* may be computed iteratively from the light-intensity 
data I ( t ) ,  as demonstrated in the thesis of Hassen (1987). For non-dilute suspensions, 
the particlc-flux continuity equation incorporating a hindered-settling function is 
used to directly calculate a,*/a* for a given distribution and initial total concentration 
as a function of the local particle concentration in the interface ; the results, which 
are independent of the settling time, are shown in figure 10 for particles of type 1. 
Since this method for determining the size correction ratio neglects hydrodynamic 
diffusion, it is not rigorous. Fortunately, the resulting error is expected to be 

FIGURE 9. Typical raw and smoothed transmitted light intensity versus time data. 
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FIGURE 10. Ratio of area-averaged particle radius for a given layer in the interface to that in the 
initial suspension as a function of the total local concentration for a / a  = 0.057 and several values 
of Go. 

negligible. In  fact, leaving the correction factor out completely leads to a t  most a 2 % 
error in determining the hindered-settling velocities from the light-intensity data 
obtained in our experiments. 

The entire sigmoidal-shaped transmitted-light-intensity curve may be analysed by 
the method described above to give rather complete information on the particle 
concentration versus time profile within the interface as it sediments past the light 
beam. For the present purposes, we are most interested in the vertical thickness of 
thc sedimenting interface, and therefore a precise definition of this quantity is 
needed. Since the experimental method determines the particle concentration a t  a 
fixed sedimentation distance, h, as a function of time, rather than at a fixed time as 
a function of distance, a convenient definition of the interface thickness is given by 
(3.1) with t replaced by ti: 

(4.4) 6 = (us 4 4  - 261) ti. 

The settling times a t  which the isoconcentration planes within the interface where 
@/@,, = i,+, and i, respectively, reach the location of the light beam are denoted by 
ti, ti, and ti and may be determined directly from (3.3) and the transmitted-light- 
intensity data. The corresponding first, second, and third quartile interface velocities 
are, respectively, U; = h/t;, U; = h/h,  and ua 3 h/t;. Equation (3.2) for the relative 
quartile interface thickness is then recovered by dividing both sides of (4.4) by the 
settling distance, h. Note that if the three quartile velocities were constant, then the 
interface thickness would increase linearly with the settling distance. This is 
expected to be the case when the interface spreading is solely due to  polydispersity 
in the settling velocities of individual particles, but not when particle-particle 
interactions lead to a diffusive spreading of the interface. 
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5. Results of experiments 
Typical raw transmitted light intensity versus time data are shown in figure 11 for 

a suspension of the - 100+ 140 mesh spheres (type 2) a t  a total initial concentration 
of CP, = 0.05 for each of four different measurement depths. There are two features 
of these curves that we note here. One is that  they become less steep as h increases, 
indicative of the spreading of the interface as the sedimentation proceeds. The second 
is that the sigmoidal portion of each curve is less steep, in general, for times less than 
the time a t  which the middle of the interface passes the beam than for times greater 
than this. This indicates that the lower portion of the interface spreads more than the 
upper portion of the interface, an interesting feature that will be discussed more fully 
in $6. 

5.1. Median velocity of the interface 
Although our primary interest in this work is the spreading of the interface a t  the top 
of a sedimenting suspension, the experimental data may also be used to determine 
the median interface velocity in order to provide useful information on the hindered 
settling behaviour of a suspension. The interface median velocity, U; = h/h,  is the 
average velocity of the isoconcentration plane within the interface where @/@, = f 
as it falls over the distance h. In  figure 12, this velocity is made dimensionless with 
u ; , ~  and plotted versus the total initial particle volume fraction. Each data point 
represents the mean of all experiments performed a t  the given concentration. Also 
shown in this figure are predictions from the complete polydisperse theory of §$2 and 
3 using Batchelor’s theory for the hindered-settling function as given by (2.6) and 
also using the common empirical hindered-settling functions given by (2.7) and 
(2.9). 

As noted previously, the theoretical predictions for the dimensionless median 
interface velocity do not vary significantly with the degree of polydispersity in 
particle sizes. The theoretical results for the two particle distributions shown in figure 
12 coincide within 1 YO, and so only a single curve is shown for each hindered settling 
function. This is true even for the dashed curve which was generated using 
sedimentation coefficients in (2.6) that  depend on the local size distribution of 
particles. For the more narrow particle size distribution (type l) ,  St j  values predicted 
by Batchelor & Wen (1982) vary from -6.0 to -5.2 for particle sizes between plus 
and minus one standard deviation about the mean, whereas these coefficients for the 
broader distribution (type 2) vary from -6.3 to -5.0. Since these ranges are 
relatively small and centred on the value of X i j  = -5.6 appropriate for a nearly 
monodisperse suspension, i t  is not surprising that the results for the two size 
distributions are nearly identical. This justifies our approximation of using a 
correlation based only on the total local particle concentration, at least for the size 
ranges used in the experiments reported here. The greater problem is that  (2.6) is 
restricted to dilute suspension. It is reasonably accurate for @, < 0.05, but grossly 
underpredicts the median settling velocity for @, 2 0.10. 

For Qo < 0.01, the decrease in the measured values of u; with increasing @, is 
greater than that predicted by (2.7), which has the form u; - u1 ,,(l -5Qo) in the dilu\e 
limit, but it is less than that predicted by (2.9), which has t& form u; - u;,,( 1 - @;) 
in the dilute limit. For 0.01 < @, d 0.15, (2.7) and (2.9) give predictions that are of 
similar shape, except that the hindered-settling velocities predicted using (2.9) are 
approximately 20% less than those using (2.7). The experimental data follow the 
trend of these correlations and lie in between them. Note that the dilute-limit settling 
velocity, u;,,, was calculated from (2.5) for the median particle size and has an 
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FIGURE 12. Median settling velocity data  for particles of'(.) type 1 and (+) type 2 .  The error bars 
represent plus and minus one standard deviation about the mean. Also shown are the predictions 
of the polydisperse theory using (2.6), (2.7) and (2.9) for hindered-settling functions. 

uncertainty of a t  least 5% due to uncertainties in the measured fluid and particle 
properties. 

5.2. Quartile thickness of the interface 

In  addition to  t5he median velocity, the first and third quartile velocities of the 
interface were calculated from the light-extinction data for each of the over 200 
sedimentation experiments performed. These were then used in (4.4) to determine 

6.2 
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FIGCJRF, 13. Relative quartile interface-thickness data versus concentration a t  four different 
settling depths for particles of (a )  type 1 and ( b )  type 2 .  The lower curves are the prediction of the 
polydisperse theory using (2.7) and (2.9) for hindered-settling functions. 

the quartile interface thickness, 6. I n  figure 13, the resulting values for the relative 
quartile thickness, Slh, are shown. The data points represent mean values for the 
repeated experiments, and the error bars on the ‘ h  = 1.5 ern ’ curves represent plus 
and minus one standard deviation about the mean. In  general, the error was found 
to be smaller for the larger values of h. Also plotted in figure 13, as the lower curves, 
are the values of 6/h  predicted using the theory of $ 2 .  This theory, which includes 
polydispersity and hindered settling but not diffusion, predicts that  6 / h  is 
independent of h and decreases with increasing dj0 owing to the self-sharpening effect 
of hindered settling. Predictions using (2.6) for the hindered-settling function are 
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similar to those shown using (2.7) and (2.9) for dilute suspensions. When Q0 2 0.08, 
the predictions using (2.6) fall below the others because of the greater hindered 
settling and self-sharpening given by (2.6). 

The measured values of Slh shown in figure 13 are appreciably larger than those 
predicted by the theory in $2. We hypothesize that the additional spreading is due 
to the effects of hydrodynamic diffusion. Evidence supporting this hypothesis is 
given in $6. The additional spreading of the interface is greatest near the top of the 
sedimentation vessel, and is smaller for larger values of h. This is because the vertical 
concentration gradients, which the diffusive flux is proportional to, are highest when 
the interface is near the top of the vessel and they become smaller as the interface 
falls and broadens. 

The local maxima observed in the S/h versus Q0 curves suggest that  the effect of 
diffusion in broadening the interface increases as the particle volume fraction is 
increased from the dilute limit. At the same time, the self-sharpening effect of 
hindered settling increases, until, at a particle concentration of a few percent by 
volume, the competing effects balance and a maximum interface thickness is 
observed. For greater concentrations, the self-sharpening effect of hindered settling 
is stronger than the broadening one of diffusion, and the interface thickness decreases 
with increasing total concentration. It is also plausible that the hydrodynamic 
diffusivity decreases a t  high particle concentrations owing to the tight arrangement 
preventing a given particle from having significant motion relative to its neighbours, 
although it seems likely that this would occur a t  higher solids volume fractions than 
reported here. 

6. Estimates of hydrodynamic diffusivity from interface-spreading data 
I n  this section, we analyse the interface-spreading data in order to show that the 

observed spreading in excess of that expected from polydispersity and hindered- 
settling effects alone may be described, a t  least approximately, by a diffusion 
process. This is then used to  infer information on the self-induced hydrodynamic 
diff usivi ty  . 

The thickness of the interface arising from the convective process associated with 
the distribution in particle sizes is expected to increase in proportion to  the settling 
distance, whereas the thickness of the interface arising from a diffusional process 
associated with velocity fluctuations is expected to increase in proportion to the 
square root of the settling distance. Therefore, in figure 14, the data of figure 13(u) 
for r9, = 0.02 are recast in a plot of S versus h and hk. From this, it  is seen that S does 
not increase linearly with either h or hi. Although it is expected that a diffusional 
spreading mechanism is dominant when the interface is near the top of the vessel, 
where the concentration gradient is large, and that the convective spreading 
mechanism of polydispersity is dominant when the interface has fallen to near the 
bottom of the vessel, where the concentration gradient is smaller, both of these 
mechanisms are important for most of the length the vessel used in our experiments. 
Unfortunately, the finite height of the light slit prevented us from obtaining accurate 
data for h < 1.5 cm, and the finite depth of the vessel prevented us from obtaining 
data for h > 32 cm. 

In order to see whether the observed spreading in excess of that  expected from the 
effects of polydispersity and hindered settling alone may be described as a diffusion 
process, the quantity S-Sp was calculated and then plotted versus hi in figure 14. 
Here, S, = 0.12h is the predicted interface thickness due to  polydispersity and 
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FIGURE 14. The measured dependence of the quartile interface thickness on the settling distance 
for particles of type 1 a t  Go = 0.02. Also shown as the dashed curve is 6-8, versus hz, where S is 
the measured interface thickness, and 6, is the predicted interface thickness in the absence of 
diffusion. 

hindered settling effects alone, as may be calculated from the theory of $2 using (3.2). 
Since the data plotted in this fashion lie approximately on a straight line through the 
origin, they suggest that additional spreading may indeed be described a t  least 
approximately, as a diffusion process. 

An estimate of the self-induced hydrodynamic diffusivity may be made from the 
observed rate of spreading of the interface. The one-dimensional convective-diffusion 
equation with constant diffusivity D and constant median settling velocity u; yields 
the well-known solution : @/@, = F ( y ) ,  where F ( y )  is the cumulative distribution 
function of a standardized normal random variable, and y = ( h - q t ) / ( D t ) i .  
Using the definition given by (4.4) for the quartile interface thickness, along 
with a probability table for the function E’(y), this solution yields: 

8, = 1.35(Dh/~;) i ,  (6.1) 

with a relative error of O(D/u$) .  Since, in general, D and u; are functions of the local 
volume fraction @, which varies throughout the interface, their values in (6.1) must 
be interpreted as average or effective values for the interface. 

The subscript d on the quartile interface thickness given by (6.1) is to  emphasize 
that this result is for spreading due to diffusion and not polydispersity. For a 
suspension of spheres of radius a settling at a median hindered settling velocity u; in 
a large container a t  low Reynolds number and large PBclet number, there are no 
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other independent length or velocity scales, and so the self-induced hydrodynamic 
diffusivity must scale as 

The dimensionless diffusivity 6 is a function only of the local particle volume 
fraction @. Note that we have chosen to scale the diffusivity with the median 
hindered settling velocity ua rather than the median Stokes velocity u;,,. 

In order to use (6.1) and (6.2) to find the unknown dimensionless diffusivity D, the 
spreading due to diffusion, S,, must be obtained from the experimental data as a 
function of the settling distance h. Motivated by the results shown in figure 14, which 
are typical of the data, the diffusive spreading is tentatively considered to be 
approximately equal to the measured interface spreading in excess of the theoretical 
predictions for polydispersity and hindered setting acting alone, i.e. 13, x 13-SP. 
Along with (6.1) and (6.2), this yields 

D = a u t 6 .  (6.2) 

6-6 2 z 1.35(%) 
h 

This model must be regarded as approximate, since there is a t  least some coupling 
between the effects of diffusion, polydispersity, and hindered settling. 

Equation (6.3) suggests that  a plot of S/h versus (a/h)i  should yield a straight line 
with slope 1.35Di and intercept 6,lh. Such a plot is shown in figure 15 using the data 
from figure 13 (a) for @, = 0.01 and for o0 = 0.05. In  each case, a straight line fits the 
data well, adding further justification for the chosen approximate method for 
interpreting the data. The slope of the line for Q0 = 0.05 is higher than that for 
Go = 0.01, indicating an increase of the self-induced hydrodynamic diffusivity with 
concentration, whereas the intercept is lower for @, = 0.05 than for @, = 0.01, 
indicating a reduction of the spreading of the interface due to polydispersity with an 
increase in concentration because of the self-sharpening effect of hindered settling. 

The slope and intercept from linear regression of the 6/h versus (a/h)i  experimental 
data for each initial concentration in figure 13 are given in table 1.  The intercepts are 
in reasonable agreement with the predicted values of SJh, except that they are 
somewhat high for small Q0 and then become too low for @, > 0.05. The slopes for 
particles of type 2 are slightly lower than those for particles of type 1,  and 
significantly lower when @, = 0.02, but the two exhibit the same trends for the 
diffusivity, as shown in figure 16. The inferred value of 6 is between one and two for 
the smallest concentrations investigated, increases very rapidly with increasing 
concentration until reaching a value between 10 and 15 for particle concentrations 
of a few percent by volume, and then levels off or declines slightly as the particle 
conccntration is increased further. Table 1 and figure 16 should not be interpreted as 
directly giving the hydrodynamic diffusivity as a function of local concentration ; 
instead the measured 6 is an effective average diffusivity for the entire interface. The 
fact that these diffusivities for particles of type 2 are lower than those for particles 
of type 1 indicates that relative particle motion due to polydispersity is not the 
dominant source of hydrodynamic interactions and diffusion. In  fact, it  is plausible 
that the polydispersity actually reduces the self-induced hydrodynamic diffusivity 
for dilute suspensions because the spread in individual particle settling velocities 
reduces the correlation time for particle encounters. 

Finally, we return to our earlier observation that the spreading is not symmetric 
about the isoconeentration plane where @/Go = +, but that  the lower portion of the 
interface spreads a t  a greater rate than does the upper portion of the interface (see 
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@, = 0.01 and @, = 0.05. 

Partick Slope Intercept Theory 
@o type (1.35B;) D(cm2/s) U; (cm/s) V,/h) (%JN 

0.002 1 1.7f0.5 2 . 0 ~  0.0180 0.20f0.02 0.17 
2 i.6+0.5 1.2 x 10-4 0.0137 0.30f0.02 0.27 

2 1.6f0.3 1.2 x 0.0131 0.30+0.01 0.26 
0.010 1 3.0f0.3 5.6 x 0.0162 0.19f0.01 0.15 

0.005 I i . 8 f0 .3  2.2 x 1 0 - 4  0.0174 0.23 kO.01 0.16 

2 2.1 f0 .3  2.0 x 0.0128 0.28f0.01 0.25 
0.020 1 5.0f0.4 1 . 4 ~  0.0150 0.12fO.02 0.12 

2 2.7 f0 .3  3.0 x 0.0121 0.26k0.01 0.23 

0.10 1 4.4f0.2 6 . 9 ~  0.0093 -0.02_+0.01 0.03 

0.050 1 5.0f0.3 1.2 x 0.0126 0.07f0.01 0.07 
2 4.4k0.2 6.7 x 0.0104 0 .18~0 .01  0.16 

2 4.1 k0.4 4.5 x 0.0078 0.05 f0.02 0.08 
0.125 2 4.1 k0.4 3.9 x 0.0068 0.00+0.02 0.06 

TABLE 1 .  Slopes and intercep$s, along with their 90 % confidence intervals, for least-squares linear 
regression of 6/h versus (a /h) t  data. Also shown are the measured values of the median hindered- 
settling velocities and hydrodynamic diffusivities, and the predicted values of &Jh from the 
diffusionless theory. 

0.15 2 4.0f0.2 3.2 x 0.0061 -0.04f0.01 0.04 

figure 11).  This is quantified in figure 17 where the measured quartile interface- 
thickness ratio &/+ is plotted versus (a /h) i  for particles of type 1 a t  cD0 = 0.02. The 
first quartile and third quartile interface thickness are defined, respectively, as 

6; = (Ua- Ut)  ti, (6.4) 

8: = ( U p q k ; .  (6.5) 

We expect that there are two major reasons for the observed 8; > 8;. One is the 
concentration buildup of the smaller particles in the upper layers of the interface due 
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FIGURE 16. Effective value of the self-induced hydrodynamic diffusivity for the spreading interface 
versus particle volume fraction in the bulk suspension for particles of type 1 (0 )  and type 2 
(0). 
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FIGURE 17. The measured quartile interface-thickness ratio for particles of type 1 a t  Q0 = 0.02. 

to hindered settling and particle-flux continuity requirements, as discussed in $3.  As 
was seen in figure 5 ,  this leads to a relatively small spread in settling velocities in the 
upper portion of the interface compared with that in the lower portion of the 
interface. The predicted value of S$S; for Q0 = 0.02 in the absence of diffusion is 1.3, 
in good agreement with the intercept of the data regression shown in figure 17. 
Second, it is expected that the self-induced hydrodynamic diffusivity has a higher 
value near the bottom of the interface than near the top of the interface since the 
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average particle concentration, size and settling velocity are higher in the lower 
layers of the interface. This gives a greater asymmetry in the spreading for smaller 
settling distances. 

7. Concluding remarks 
I n  this paper, the spreading of the interface a t  the top of a sedimenting suspension 

of non-Brownian particles has been examined in the light of three factors: a 
polydisperse distribution in particle sizes which yields a vertical interface thickness 
that increases in proportion to the settling distance and to the spread in particle 
sizes ; hindered-settling effects which become increasingly important as the solids 
concentration is increased and which cause a self-sharpening of the interface ; and a 
self-induced hydrodynamic diffusion process arising from fluctuations in the particle 
fall speeds as they interact with one another and which leads to a vertical interface 
thickness that increases with the square root of the settling distance. Transmitted- 
light-intensity measurements of the interface showed that its thickness may be much 
greater than that expected from the small degree of polydispersity in the particles 
used, especially for short settling distances. The measured interface thickness in 
excess of that  predicted from a diffusionless theory accounting for polydispersity and 
hindered settling was found to increase approximately in proportion to the square 
root of the settling distance, as is characteristic of diffusional processes. These data 
were used to estimate the magnitude and concentration dependence of the self- 
induced hydrodynamic diffusivity. Using the resulting values along with (3.4) in (6.3) 
shows that the ratio of spreading due to hydrodynamic diffusion to that due to 
polydispersity for non-concentrated suspensions is approximately (a/h)i/(o-/a).  Over 
a wide range of settling distances and particle size distributions, both of these 
spreading mechanisms are important. 

The self-induced hydrodynamic diffusivities reported in table1 and figure 16 must 
be regarded as approximate, both because of the moderate scatter in the data and 
because of the approximate nature of the data analysis. This is especially true for the 
higher concentrations because hindered settling may be expected to reduce the 
spreading due to diffusion ; hindered settling was not accounted for in the estimation 
of the diffusivity other than by reducing the constant value used for the median 
settling speed, u;. Also, the inferred diffusivities depend most strongly on the data for 
small h. Since particles must fall far enough to undergo several encounters with other 
particles before their fluctuations may be described as diffusive, there may be some 
inaccuracies in the data interpretation for small h and small Oo. I n  particular, some 
initial convective spreading of the interface would be expected even for a 
monodisperse suspension, since particles that  are close to one or more other particles 
fall faster than the mean and leave the isolated particles behind. This phenomenon 
of clusters of particles falling more rapidly than single particles and leaving behind 
a depleted, fuzzy interface containing slower-settling isolated particles has been 
described previously in the sedimentation literature (Tory & Pickard 1986). Also, 
since it is difficult to stir the suspension near the top of the vessel without entraining 
air bubbles, the initial conditions may depart from the uniform suspension assumed 
in the model. However, this is not expected to be an important factor, since 
extrapolation of the data to the top of the vessel (h  = 0) shows that the initial interface 
thickness is negligible compared with the excess interface thickness observed a t  the 
measured depths (see figure 14). 

I n  spite of the approximate nature of our analysis, we feel that the present findings 
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are significant because they show that self-induced hydrodynamic diffusion is a 
surprisingly strong phenomenon. For the suspensions described in this paper, typical 
dimensional hydrodynamic diffusivities are on the order of cm2/s, whereas the 
Brownian diffusivities are only on the order of cm2/s. The hydrodynamic 
diffusivities reported in this paper should be regarded as average quantities for the 
interface as a wholc rather than as local values referring to a specific particle volume 
fraction, Also, since a particle concentration gradient is present in the interface, these 
diffusivities are collective (down-gradient) diffusivities which may be different from 
the coefficient of self-diffusion which would be observed by following an individual 
particle in the interior of a homogeneous suspension. Experiments to  measure the 
latter have recently bzen reported by Ham & Homsy (1988). Clearly, further work 
involving more definitive experiments and theory on self-induced hydrodynamic 
diffusion is needed. 
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